TELICA is ETEL’s new multi-axes platform primarily dedicated to semiconductor back-end applications. Its dual gantry architecture provides motion along 3 degrees of freedom, X, Y and Z, for a total number of 8 controlled axes. It is designed to fulfill the most challenging requirements of advanced die bonding processes (Flip-chip, Fan-out, 3D stacked packages), µ-LED bonding, dispensing applications or more generally any application requiring simultaneously throughput and accuracy.

TELICA

TELICA fits any application requiring a combination of accuracy and throughput.

By design, conventional motion system architectures are either optimized for high positioning accuracy or high throughput. Thanks to a very innovative motion system architecture, TELICA meets simultaneously accuracy and throughput at an unprecedented level, namely:

<table>
<thead>
<tr>
<th>PRIOR ART</th>
<th>TELICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 µm @ 7 kUPH</td>
<td>1 µm @ 10 kUPH</td>
</tr>
</tbody>
</table>

| OR | 5 µm @ 3 kUPH |

PRODUCT HIGHLIGHTS

- Wafer (300 mm) and panel (720 x 650 mm) substrate process-ability
- ±350 nm local placement accuracy (moves with local alignment)
- ±1 µm global placement accuracy (blind moves)
- <10 minutes thermal transient (from cold start to hot working state)
- Up to 10 kUPH throughput for a typical flip chip die bonding application
- Up to 180 kUPH throughput for µ-LED bonding
- Up to 4 g acceleration in X, 6 g in Y and 7.5 g in Z
- Up to 2 m/s speed in X and Y and 1 m/s in Z
- ISO 5 cleanroom compatible

Multi-dimensional encoders ensure the placement accuracy level while water cooled ironcore motors allow extreme duty cycles.

PLACEMENT ACCURACY OVER TIME AT 7 kUPH

Coupled with ETEL’s state-of-the-art AccurET controllers, the TELICA platform benefits from multiple control features such as: non-linear control, advanced feedforward and trajectory filters, full synchronization of all axes with nanosecond jitter, a specific gantry control algorithm, multidimensional mapping, advanced triggering capabilities based on real mapped position, advanced software diagnostic and system identification tools for control optimization.